Synthesis and Characterization of an Unusual Heterobridged Di-rhodium Complex. X-Ray Molecular Structure of $[Rh_2(\mu-pz)_2I_2(CO)_2(\mu-dppm)]$

LUIS A. ORO, M. TERESA PINILLOS

Departamento de Química Inorgánica, Universidad de Zaragoza, 50009 Saragossa, Spain

ANTONIO TIRIPICCHIO and MARISA TIRIPICCHIO-CAMELLINI

Istituto di Chimica Generale ed Inorganica, Università di Parma, Centro di Studio per la Strutturistica Diffrattometrica del C.N.R., Via M. D'Azeglio 85, 43100 Parma, Italy

Received November 30, 1984

Synthesis and structure in dinuclear metal complexes have attracted much interest in recent years. Rhodium complexes with two cis-binucleating nitrogen donors (e.g., pyrazolate or naphthyridine type ligands) have been reported [1, 2]. On the other hand rhodium complexes with two trans-µ-bis(diphenylphosphino)methane (dppm) ligands have been thoroughly investigated; among these intense effort has been directed to the class of compounds with socalled 'A-frames' [3]. In this context we have recently described the preparation of new complexes of formula $[Rh_2(\mu-pz)(CO)_2(\mu-dppm)_2]^+$, having the A-frame type structure with the pyrazolate group as bridgehead ligand, and related $[Rh_2(\mu-pz)I_2(CO)_2(\mu-pz)]$ $dppm)_2$ ⁺ derivatives [4]. We now report the preparation and structural characterization of an unusual heterobridged complex that appears to contain the first example of a rhodium-rhodium bond bridged by only one dppm group and two exo-bidentate nitrogen donor ligands.

A diethyl ether or hexane solution of the $[Rh_2(\mu-pz)_2(CO)_4]$ complex (I) (pz = pyrazolate) $[\nu(CO) = 2022, 2079 \text{ and } 2090 \text{ cm}^{-1}]$ [1a] adds successively molecular iodine (1:2 mol ratio) leading to a 2:1 adduct of formula $[Rh_2(\mu-pz)_2I_4(CO)_4]$ (II) (80% yield), by the intermediacy of the 1:1 adduct $[Rh_2-(\mu-pz)_2I_2(CO)_4]$ (III) (65% yield)*. The IR spectrum of complex III presents $\nu(CO)$ bands at 2088, 2107 and 2120 cm⁻¹; its pattern and the observed shift to higher wavenumbers relative to I suggest a two-center oxidative addition with concurrent metal-metal bond formation, as previously observed in a related dinuclear benzamidinate rhodium complex [5]. Complex II presents three $\nu(CO)$ bands at 2098, 2132 and 2155 cm⁻¹, suggesting the formation of a dinuclear

0020-1693/85/\$3.30

rhodium(III) complex by breaking of the metalmetal bond proposed for complex III.

Interestingly, the addition of dppm to a solution of $[Rh_2(\mu-pz)_2I_2(CO)_4]$ (1:1 mol ratio) gives rise to the displacement of carbon monoxide and formation of [Rh₂(µ-pz)₂I₂(CO)₂(µ-dppm)] (IV) (v(CO): 2060 cm⁻¹). Its ³¹P NMR spectrum shows a symmetric multiplet (AA'XX' system) with $\delta(P)$ at 28.9 ppm $[{}^{1}J(Rh-P) + {}^{x}J(Rh-P) = 110 \text{ Hz}]$. In order to confirm the proposed formulation of this unusual complex and the relative disposition of the bridging ligands, an X-ray structural determination of IV was undertaken. Crystal data: $C_{33}H_{28}I_2N_4O_2P_2Rh_2$, M =1034.18, Monoclinic, space group $P2_1/n$, a = 12.772-(5), b = 24.201(9), c = 11.599(6) Å, $\beta = 96.04(3)^{\circ}$, V = 3565(3) Å³, $D_c = 1.927$ g cm⁻³, Z = 4, λ (Mo- K_{α}) = 0.71069 Å, μ (Mo- K_{α}) = 27.48 cm⁻¹. 5695 independent reflections were collected on a Siemens AED diffractometer ($3 \le \theta \le 24^{\circ}$). The crystal structure was solved by Patterson and Fourier methods. The refinement was carried out by means of fullmatrix least-squares with anisotropic thermal factors for the Rh, I, P, N, O and carbonyl C atoms. The current R value was 0.046 for 2539 observed reflections, having $I \ge 2\sigma(I)$. The final atomic coordinates for the non-hydrogen atoms are given in Table I. Thermal parameters and a list of structure factors are available from the authors on request.

The structure of complex IV consists of binuclear rhodium(II) complexes triply bridged by two pyra-

Fig. 1. A view of the complex $[Rh_2I_2(CO)_2(\mu-pz)_2(\mu-dppm)]$ (IV). Selected bond distances (Å) and angles (°) are: Rh(1)– Rh(2) 2.612(3), Rh(1)–I(1) 2.710(3), Rh(1)–P(1) 2.288(4), Rh(1)–N(1) 2.039(12), Rh(1)–N(3) 2.076(12), Rh(1)–C(1) 1.85(2), Rh(2)–I(2) 2.736(3), Rh(2)–P(2) 2.284(4), Rh(2)– N(2) 2.036(12), Rh(2)–N(4) 2.139(12), Rh(2)–C(2) 1.83(2); P(1)–Rh(1)–N(1) 89.5(3), P(1)–Rh(1)–N(3) 168.8(4), P(2)–Rh(2)–N(2) 89.4(4), P(2)–Rh(2)–N(4) 166.0(4).

© Elsevier Sequoia/Printed in Switzerland

^{*}All compounds gave satisfactory microanalytical data and molecular weight measurements.

TABLE I. Fractional Atomic Coordinates $(\times 10^4)$ with e.s.d.s in Parentheses for the Non Hydrogen Atoms.

Atom	x/a	y/b	z/c
RH1	334(1)	1654(1)	3329(1)
RH2	1819(1)	971(1)	2871(1)
I1	-1251(1)	2403(1)	3082(1)
12	3176(1)	388(1)	1658(1)
P1	1224(3)	2075(2)	4905(3)
P2	2908(3)	1209(2)	4483(3)
01	-886(10)	854(6)	4635(11)
02	1088(14)	134(6)	3565(13)
N1	1281(9)	2049(5)	2283(9)
N2	2115(9)	1715(5)	2152(9)
N3	-189(10)	1209(6)	1849(10)
N4	554(11)	896(5)	1517(10)
C1	-395(12)	1174(8)	4196(13)
C2	1367(17)	304(8)	3380(17)
C3	1303(11)	2479(6)	1542(13)
C4	2180(14)	2412(7)	931(15)
C5	2655(12)	1929(7)	1318(13)
C6	-1105(15)	1131(8)	1124(16)
C7	-831(15)	732(8)	326(16)
C8	215(14)	610(7)	620(16)
C9	2622(12)	1918(6)	4905(13)
C10	800(12)	1892(6)	6295(13)
C11	1511(14)	1745(7)	7242(15)
C12	1137(15)	1656(8)	8349(17)
C13	75(17)	1696(8)	8427(18)
C14	-627(17)	1807(9)	7484(19)
C15	-268(14)	1910(7)	6361(16)
C16	1210(11)	2840(6)	4900(12)
C17	1696(13)	3117(7)	4041(14)
C18	1669(14)	3682(7)	4041(14)
C19	1152(14)	3982(7)	4842(15)
C20	659(14)	3689(8)	5684(16)
C21	701(14)	3112(8)	5720(15)
C22	4291(12)	1236(6)	4257(12)
C23	4780(13)	1716(7)	3005(14)
C24	5836(14)	1710(7) 1723(7)	3756(15)
C25	6413(16)	1723(7) 1234(9)	3730(13) 3944(17)
C25	5925(10)	740(10)	3044(17)
C27	4819(16)	721(8)	4092(20)
C28	7850(11)	822(6)	4313(17) 5914(17)
C29	2039(11)	888(8)	5614(12)
C20	36/3(19)	607(0)	7764(10)
C31	2702(17)	332(8)	7097(19)
C32	1923(15)	332(0)	7141(16)
C33	1923(13)	522(7)	6025(14)
(33	19/4(13)	522(7)	6035(14)

zolate and one dppm ligands (Fig. 1). Each rhodium atom is octahedrally coordinated and is bound to a iodine atom, to a carbonyl carbon, to a phosphorus from dppm ligand, to two nitrogen atoms from two pyrazolate ligands, and to the other rhodium atom. The Rh-Rh distance [2.612(3) Å] is very short and is comparable with that [2.612(1) Å] reported for the also triply bridged binuclear complex [Rh₂Cl₂(μ -CO)(μ -Ph₂PPy)₂] (Ph₂PPy = 2-(diphenylphosphino)pyridine) [6].

Noteworthy is the mutual disposition of the three ligands in **IV**. The two pyrazolate ligands are nearly perpendicular to each other (the dihedral angle being 97.1(6)°). One of the pyrazolate ligands is also nearly perpendicular to the mean plane passing through Rh(1), Rh(2), P(1), P(2) and C(9), whereas the other is nearly coplanar (dihedral angles 99.9(3) and 7.4(5)° respectively). Dihedral angles not very different are those formed by the mean planes through Rh(1), Rh(2), N(1), N(2) and through Rh(1), Rh(2), N(1), N(2) are through Rh(1), Rh(2), P(1), P(2), C(9) (86.6(1) and 2.6(2)° respectively).

References

- (a) R. Usón, L. A. Oro, M. A. Ciriano, M. T. Pinillos, A. Tiripicchio and M. Tiripicchio-Camellini, J. Organomet. Chem., 205, 247 (1981); (b) A. Tiripicchio, F. J. Lahoz, L. A. Oro and M. T. Pinillos, J. Chem. Soc., Chem. Commun., 936 (1984) and refs. therein.
- 2 (a) A. Tiripicchio, M. Tiripicchio-Camellini, R. Usón, L. A. Oro, M. A. Ciriano and F. Viguri, J. Chem. Soc., Dalton Trans., 125 (1984) and refs. therein; (b) A. M. Manotti Lanfredi, A. Tiripicchio, R. Usón, L. A. Oro, M. A. Ciriano and B. E. Villarroya, Inorg. Chim. Acta, 88, L9 (1984).
- 3 R. J. Puddephatt, Chem. Soc. Rev., 12, 99 (1983) and refs. therein.
- 4 L. A. Oro, D. Carmona, P. L. Pérez, M. Esteban, A. Tiripicchio and M. Tiripicchio-Camellini, J. Chem. Soc., Dalton Trans., in press.
- 5 F. J. Lahoz, A. Tiripicchio, M. Tiripicchio-Camellini, L. A. Oro and M. T. Pinillos, J. Chem. Soc., Dalton Trans., in press, and refs. therein.
- 6 J. P. Farr, M. M. Olmstead, C. H. Hunt and A. L. Balch, Inorg. Chem., 20, 1182 (1981).